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One-pot, cis-selective synthesis of a-substituted
b-trimethylsilyl-a,b-epoxyesters from a-ketoesters
and diazo(trimethylsilyl)methyl magnesium bromide
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Abstract—Reaction of a-ketoesters with diazo(trimethylsilyl)methyl magnesium bromide followed by in situ treatment with pivalic
acid gave a-substituted b-trimethylsilyl-a,b-epoxyesters in an efficient and cis-selective manner.
� 2006 Elsevier Ltd. All rights reserved.
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Scheme 2. Report by Schöllkopf and Scholz.
a-Substituted a,b-epoxyesters (a-substituted glycidates)
are very promising as bioactive compounds.1 To date,
many synthetic methods of these compounds have been
reported;2–5 for instance, (i) Darzens condensation of a-
haloesters with ketones or aldehydes,2 (ii) epoxidation of
a-substituted acrylates,3 and (iii) addition of nucleo-
philes to tert-butyl 2-ethoxycarbonylprop-2-enyl perox-
ide followed by SNi reaction.

4 However, in most cases
of the methods, the synthesis of the substrates is com-
plex and/or laborious, and therefore, development of a
new approach to a-substituted a,b-epoxyesters will be
valuable.

Recently, we have revealed that reactions of 4-aryl-2-
oxobutanoates and aryloxypyruvates with TMSC(Li)N2

gave 2,3-dihydroazulene-1-carboxylates6 and 1,2-dihy-
dro-1-oxaazulene-3-carboxylates7 via alkylidenecarbene
intermediates (Scheme 1). Interestingly, in these reac-
tions, TMSC(Li)N2 chemoselectively reacted with the
ketone moiety of a-ketoesters and the ester moiety
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Scheme 1. Our previous reports.
remained intact. Meanwhile, it has been reported by
Schöllkopf and Scholz that reaction of acetone with
TMSC(Li)N2 gave the corresponding diazoalcohol,
which was converted to 2,2-dimethyl-3-trimethylsilyloxi-
rane at room temperature in ca. 33% yield in two steps
(Scheme 2).8 These results led us to investigate the syn-
thesis of a-substituted a,b-epoxyesters from a-ketoesters
using TMSC(Metal)N2. As a result of intensive investi-
gation of reaction conditions, we found that a-
substituted b-trimethylsilyl-a,b-epoxyesters could be
cis-selectively synthesized by reaction of a-ketoesters
with the magnesium bromide salt of TMSCHN2

(TMSC(MgBr)N2)
9 followed by treatment with pivalic
ylsilyldiazomethane.
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Scheme 3. Reaction of TMSC(Li)N2 or TMSC(MgBr)N2 with 1a.
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Scheme 4. Synthesis of 4a using chloro(trimethylsilyl)methyl lithium.
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acid in a one-pot process. Herein, the details of our
results are described.

Initially, under similar reaction conditions reported by
Schöllkopf,8 we performed the reaction of TMSC(Li)N2

with commercially available ethyl 4-phenyl-2-oxobut-
anoate 1a as an a-ketoester (Scheme 3). The a-ketoester
1a easily underwent the reaction with TMSC(Li)N2, but
the product was a complex mixture and the desired di-
azoalcohol 2a was not detected.10 Interestingly, under the
same reaction conditions, replacement of TMSC(Li)N2

by TMSC(MgBr)N2, prepared from TMSC(Li)N2 and
MgBr2 etherate, dramatically affected the reaction and
the desired 2a was obtained quantitatively.11 The result
suggests that the diazoalkoxide 3a-Mg might be stabi-
lized by the strong coordination of a magnesium ion
with the carbonyl group of an ester moiety. Thus, the
one-pot synthesis of a,b-epoxyesters by successive treat-
ment of the formed diazoalkoxide 3a-Mg with an acid
was examined (Table 1).12–14 When AcOH (1.5 equiv)
as an acid was used, the desired ethyl a-(2-phenethyl)-
b-trimethylsilylglycidate 4a was obtained in 50% yield
with cis-selectivity (cis:trans = 78:22) (entry 1). An
increased amount (5 equiv) of AcOH significantly
improved the cis-selectivity (cis:trans = 87:13) (entry
2). The use of 10-camphorsulfonic acid (CSA) or
CHCl2COOH in place of AcOH led to a complex mix-
ture or a decrease of the yield (entries 3 and 4). How-
ever, treatment with pivalic acid, a mild acid, was
quite effective and the best results were obtained in both
the yield (88%) and selectivity (cis:trans = 96:4) (entry
5). Although the amount of pivalic acid was increased
to 10 equiv, no improvement was observed in the selec-
Table 1. Screening of acids

TMSC(MgBr)N2 (1.2 eq.)
THF

O

TMSEtOOC
PhAcid

-78 oC, 1.5 h
cis-4a

1a
-78 oC, 1.5 h

3a-Mg

Entry Acid (equiv) Yield (%) Cis:transb

1 AcOH (1.5) 50 78:22
2 AcOH (5) 55 87:13
3 CSA (5) —a —
4 CHCl2COOH (5) 39 93:7
5 Pivalic acid (5) 88 96:4
6 Pivalic acid (10) 90 95:5

a Complex mixture was given.
b The ratio of regioisomers was calculated by 1H NMR measurement.
tivity (entry 6). Incidentally, for a comparison of the
method using TMSC(MgBr)N2 with as another syn-
thetic approach to 4a, reaction of 1a with chloro(tri-
methylsilyl)methyl lithium15 was carried out (Scheme
4).16 However, the yield of 4a was 54% with low trans-
selectivity (cis:trans = 32:68).

Next, the generality of substrates was examined (Table
2).12–14 Various a-ketoesters 1a–e bearing alkyl groups,
such as a 2-phenethyl, 3-phenylpropyl, isopropyl, or
methyl group, smoothly underwent the reaction with
TMSC(MgBr)N2 to give 4a–e in good to high yields
with high cis-selectivity (entries 1–5). Especially, the
diisopropylamide derivative 1b gave almost complete
cis-selectivity compared to that of ethyl ester 1a (entries
1 and 2). The phenyl and phenylethynyl derivatives 1f
and 1i also gave the epoxides 4f and 4i in good to high
yields, but little diastereoselectivity was observed (en-
tries 6 and 9). Thus, reaction with 1g, 1h, and 1j bearing
a bulky diisopropylamide or tert-butyl ester moiety was
examined (entries 7, 8, and 10). However, the amide 1g
did not undergo the reaction, while reaction with 1h and
1j smoothly proceeded giving the corresponding 4h and
4j in high yields. Unfortunately, 1h and 1j had almost no
effect on the selectivity (entries 8 and 10).

In this reaction, the protonation step of the resulting
diazoalcohol with an acid was crucial for induction of
diastereoselectivity as shown in Scheme 5. The cis-selec-
tivity was probably due to less steric repulsion of a tri-
methylsilyl group for a hydroxyl group than an alkyl
group. The reason for little selectivity in the reaction
Entry Substrate Yield (%) Cis:transc

1a 1a (R = Ph(CH2)2, X = OEt) 88 (4a) 96:4
2 1b (R = Ph(CH2)2, X ¼ NPri2) 80 (4b) >99:1
3 1c (R = Ph(CH2)3, X = OEt) 86 (4c) >99:1
4 1d (R =Me2CH, X = OEt) 83 (4d) 94:6d

5 1e (R =Me, X = OEt) 69 (4e) 93:7d

6 1f (R = Ph, X = OEt) 98 (4f) 57:43
7 1g (R = Ph, X ¼ NPri2) —b —
8 1h (R = Ph, X = OBut) 85 (4h) 61:39
9 1i (R = PhC„C, X = OEt) 79 (4i) 54:46
10 1j (R = PhC„C, X = OBut) 91 (4j) 55:45d

a Shown in entry 5 of Table 1.
b Almost no reaction.
c The ratio of regioisomers was calculated by 1H NMR measurement.
d The cis- and trans-isomers were inseparable by column chromato-
graphy.
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Scheme 5. Plausible mechanism for induction of diastereoselectivity.
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of 1f and 1h–j (entries 6 and 8–10 in Table 2) might be
that a phenyl or phenylethynyl group for R was similar
to an ester or hydroxy group in size, respectively.

In conclusion, we have succeeded in the one-pot cis-
selective synthesis of a-substituted b-trimethylsilyl-a,b-
epoxyesters from a-ketoesters using TMSC(MgBr)N2

and this synthetic method will provide a new access to
a-substituted a,b-epoxyesters.
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